
git-ing Started with GitHub

Hands-On Demo

Danielle Vansia

April 2022

Demo Guide

4

5

5

6

6

7

9

9

10

11

11

11

Contents

Introduction

Prerequisites

Locally Install git

Create a GitHub Account, and Configure It Locally

Create a Personal Access Token

Terminology

Fork and Clone Repos

Fork a Repo

Clone a Repo

Configure Your Local Repo

Add Remotes

Create and Check Out Branches

Demo Guide | git-ing Started with GitHub

2

13

13

14

15

16

17

19

21

21

Add, Commit, and Push Files

Add Files to the Staging Space

Commit Files

Push Commits to GitHub

Open a Pull Request (PR)

Review the Diff

Pull Changes and Update Your Repo

Additional Resources

Contribute to Open-Source Projects

Demo Guide | git-ing Started with GitHub

3

Introduction

git and GitHub are valuable tools in the tech industry. Knowing both

technologies will allow you to contribute to open-source projects. Many

open-source projects lack documentation experts, so knowing how to use

git and GitHub reduces the learning curve when contributing to these

projects.

The main goal of this demo is to get you to open your first pull request on

GitHub. This demo has the following learning objectives:

Install and configure git on your local system

Get stated with a GitHub account

Understand git- and GitHub-related terminology

Understand the various git workflows

Set up git remotes (origin and upstream)

Create and switch between branches

Clone, edit, add, and commit files locally

Open a pull request on GitHub

Understand how to pull changes from upstream

•

•

•

•

•

•

•

•

•

Demo Guide | git-ing Started with GitHub

4

Prerequisites

To get started with using git and GitHub, you will need to install a few

prerequisites on your system as well as create a GitHub account.

Locally Install git

From the Privileges application, click Request Privileges.

Open a Terminal session, and check to see if you have git on your

system:

git --version

If git is on your system, you will see a version number in the output,

and you do not need to complete the rest of the steps in this

section. If you get an error or a message asking whether you would

like to install git , then follow the steps below to install it via

Homebrew.

Install Homebrew:

/bin/bash -c "$(curl -fsSL https://

raw.githubusercontent.com/Homebrew/install/HEAD/

install.sh)"

The script will walk you step by step through the installation process.

Once Homebrew is installed, install git :

brew install git

Check if git was successfully installed:

git --version

This time, you should see a version number in the output. If for some

reason it does not show the version number, close Terminal, restart,

and run the command again.

1.

2.

3.

4.

5.

Demo Guide | git-ing Started with GitHub

5

https://brew.sh/

Create a GitHub Account, and Configure It Locally

Go to https://github.com/ to sign up for an account.

Verify your email address. Reference the GitHub documentation if

you do not receive a verification email.

Go back to Terminal, and configure git to use your credentials.

Replace Your_Name with your actual name. Replace Your_Email with

the email address you used to create your GitHub account (keep the

quotes around these items):

git config --global user.name "Your_Name"

git config --global user.email "Your_Email"

Create a Personal Access Token

From the upper-right corner of your GitHub account, click your user

icon and select Settings.

Scroll down, and on the left, click <> Developer settings.

From the left menu, select Personal access tokens.

Click Generate new token.

For Note, enter any name you want.

For Expiration, choose whatever date you want. Once this token

expires, you will have to create a new one.

For Select scopes, check the box next to repo.

Click Generate token.

On the next page, you will see your new Personal Access Token. Copy

that token to a text file — you will be unable to retrieve the token

again after this screen. When you push files to GitHub from your

machine, you will need to use this token when prompted for a

password. Have the token handy at that time.

1.

2.

3.

1.

2.

3.

4.

5.

6.

7.

8.

9.

Demo Guide | git-ing Started with GitHub

6

https://github.com/
https://docs.github.com/en/get-started/signing-up-for-github/verifying-your-email-address

Terminology

When working with git and GitHub, you will come across a lot of new

terminology. The following terms are some of the most common terms you

will see:

Term Definition

add
Moves a file to the staging space to

prepare it for a commit.

Branch

Think of a tree. Repositories start

with a main branch (historically

referred to as master). As you

continue to develop, you can create

new branches for features or fixes.

Branching allows you to

independently work on a new

feature without adding it to the

original codebase until you are

ready. You can experiment within a

branch without having to worry

about breaking the original code.

clone
Creates a local copy of a repository

on your system.

Commit

A snapshot of a point in time where

your changes are saved. Commits

contain a message indicating what

changed.

Diff
Compares your working copy of a

file to the original version of the file.

Fork

A copy of someone else's

repository, saved to your account.

This is a GitHub/GitLab concept —

not a concept related to the actual

git software.

origin

This is the location of the repository

on your GitHub account. When you

Demo Guide | git-ing Started with GitHub

7

Term Definition

fork a repository, the forked

repository becomes the origin .

git

Version-control software used to

track file changes. git enables

multiple developers to work

together simultaneously and track

file updates. git directories form

repositories. There are a number of

companies that offer Repository-

as-a-Service functionality, such as

GitHub, GitLab, and Bitbucket.

push
Uploads your local changes to a

remote repository.

pull
Fetches and updates content from a

remote repository.

Pull request (PR)
A request to merge your changes

with a remote repository.

Repository (also repo)
Contains all project files with a

history of all changes and commits.

Remote

Original versions of the repository,

hosted on another server.

upstream and origin are both

remotes.

upstream
This is the original location of the

repository you forked.

Demo Guide | git-ing Started with GitHub

8

Fork and Clone Repos

When you are working with repos, you have the option to directly clone the

repo and work on it locally, or you can fork the repo and then clone it.

Fork, clone, work locally: You would typically use this method when

you are working with open-source projects where you do not have

direct access or permissions to update the source repo. You can make

changes without affecting the original repo. You can delete forked

repos without deleting the original repo.

Clone, work locally: Use this workflow when working on your own

projects. Create a repo on GitHub, and clone it to your system to work

locally. You could also use this workflow if you are given direct access

to a repo at a company.

Fork a Repo

Go to the GitHub repo (e.g., https://github.com/vansia43/

github-git-demo).

At the top, click Fork.

If prompted, select your username as the location you want to fork to.

You will have to option to update the Repository name; however,

keep it the same as the original repo if you are going to later open a

pull request.

Click Create fork.

This will create a copy of the repo in your GitHub account. The URL for the

forked repo will include your username (i.e., github.com/your_username/

original_repo_name.git).

On your forked repo, you can see a how the current version of your repo

compares to the original repo. When you first fork it, your version should be

the same.

•

•

1.

2.

3.

4.

5.

Demo Guide | git-ing Started with GitHub

9

Clone a Repo

From your forked repo on GitHub, click Clone.

Ensure HTTPS is selected.

Copy the link using the copy icon.

Open a Terminal session.

Change directory to the folder where you want your cloned repo to

reside (e.g., Documents):

cd Documents

Run the clone command, and paste the link to the forked repo:

git clone https://github.com/your_username/repo_name.git

Note: You may be prompted to enter your username and

password. Enter your GitHub username, and use your

Personal Access Token as the password.

You should now have a local copy of the GitHub repo on your

computer. You can navigate to the main repo folder in Finder and view

the files, or you can change directory to access the repo in Terminal:

cd github-git-demo

1.

2.

3.

4.

5.

6.

7.

Demo Guide | git-ing Started with GitHub

10

Configure Your Local Repo

This section will discuss how to connect your local repo to remotes

(origin and upstream) as well as how to create and check out branches.

Add Remotes

Add remotes to push changes back to your forked copy on GitHub (the

origin) as well as pull updates from the original repo (the upstream).

Check for existing remotes:

git remote -v

If you cloned your repo directly from GitHub, then you will most likely

see the URL for your forked copy in the output. It will look something

like this:

origin https://github.com/your_username/repo_name.git

(fetch)

origin https://github.com/your_username/repo_name.git

(push)

Add the original/upstream repo so you can fetch and pull changes

later on. You can obtain this URL by going to the original repo and

clicking the Clone button:

git remote add upstream https://github.com/original_owner/

original_repo_name.git

Create and Check Out Branches

When you are working on a project in a repo, you start with a main branch.

(You may see this historically referred to as master .) As you work on

projects, also called features, you should create a new branch (e.g.,

dev or doc-updates) that tracks the work for each feature. The new

branch will mirror your main branch until you start making changes. Once

you commit your changes to your feature branch, push them to GitHub,

and open a pull request, your feature branch will merge with the original

repo's main branch.

1.

2.

Demo Guide | git-ing Started with GitHub

11

Check for existing branches:

git branch

If you have no other branches, you should see * main in the output.

To create a new branch that mirrors the branch you are currently on

and then switch to that new branch, use:

git switch -c branch_name

Replace branch_name with something descriptive to represent what

you are working on. You should see Switched to a new branch

'branch_name' in the output.

Note: This is a newer command. If you have an older

version of git , you can use git checkout -b

<branch_name> .

To move between branches, use:

git switch <branch_name>

Note: This is a newer command. If you have an older

version of git , you can use git checkout

<branch_name> .

Check the status of git :

git status

You should see On branch branch_name and nothing to commit,

working tree clean in the output (if you have not yet made any

changes). Ensure that you have switched to your feature branch

before making changes to the files.

1.

2.

3.

4.

Demo Guide | git-ing Started with GitHub

12

Add, Commit, and Push Files

Now that you have created a feature branch, you can edit and update files

within the repo. You can make file changes using any GUI-based editor,

such as Atom, VSCode, etc. You can also edit files directly in Terminal

using Vim, Nano, etc.

Add Files to the Staging Space

Once you have saved your work, check the status of git using git

status . You should see something similar to this in the output:

On branch branch_name

Changes not staged for commit:

 (use "git add <file>..." to update what will be

committed)

 (use "git restore <file>..." to discard changes in

working directory)

 modified: file.md

no changes added to commit (use "git add" and/or "git

commit -a")

Observe that file.md was edited.

Add the updated files to the staging space:

git add .

The . at the end of the command means that you are adding all files

you edited. If you want to add a single file, use git add with the file

name (i.e., git add file.md).

You should see something like this in the output:

On branch branch_name

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: file.md

This means that your file is now in the staging space and is ready to

be committed.

1.

2.

3.

Demo Guide | git-ing Started with GitHub

13

Commit Files

In git , you can view a history of commits:

git log

This will provide you with a history of the changes that were made.

The output will look like this:

Observe the first commit has two lines of text. The first line is the summary

line, which should say why you made the change. The second line of

commit text is an explanation. You can make a commit with only one line,

but if you want to provide a detailed explanation of why you made the

change or update, you should make a multi-line commit.

The first line of a commit message should follow these parameters:

Is 50 characters or less

Uses the imperative mood (e.g., "Fix grammar and typos" or "Add new

section for troubleshooting")

Provides a good, quick summary of the change

Does not include a period at the end of the line

See the Additional Resources section of this guide for some more tips on

best practices when writing commits.

•

•

•

•

Demo Guide | git-ing Started with GitHub

14

In GitHub, the commit history looks like this:

Notice how the second explanation line is accessed via the ellipses (...).

The first commit line needs to be short so that when other developers

review the commit history for the repo, they can view a quick synopsis of

the changes without the text being cut off.

Use the following command to commit a file with a single-line message

(ensure it's wrapped in double quotes):

git commit -m "Commit short message"

Use the following command to commit a file with a multi-line message

(ensure both messages are wrapped in double quotes):

git commit -m "Commit short message" -m "Longer message

description"

Push Commits to GitHub

Now that you have committed your changes, it is time to push them back

up to GitHub. Pushing your changes will add them to your GitHub origin

repo.

To push changes to the origin , use:

git push origin branch_name

Replace branch_name with the name of your feature branch.

This command will add your changes — as well as your new feature branch

— to your GitHub account. You may be prompted to enter your username

and password. Use your GitHub username and Personal Access Token for

your password.

Demo Guide | git-ing Started with GitHub

15

Open a Pull Request (PR)

Now you are ready to open a pull request — or PR — on GitHub. A PR is a

request to merge your changes with the upstream repo's main branch. A

reviewer will look at your requested changes, potentially request additional

changes, and then merge them.

Go back to your forked copy of the repo in your GitHub account, and

use the dropdown above the file list to select your feature branch. (It

may default to main .)

At the top, you'll see a message indicating your branch has recent

pushes. Click Compare & pull request to start a PR.

The UI will let you know if there are any conflicts between your

feature branch version and the upstream repo. Once you see an Able

to merge message, you can open a PR.

Next to your user icon, enter a PR title and a description. For the

description, you can repeat your commit message, or you can enter

something more detailed. This message will not show in the git log

history, so it is best to use this description to facilitate chat or

reference if this is solving a ticket/issue in GitHub.

1.

2.

3.

4.

Demo Guide | git-ing Started with GitHub

16

Click Create pull request.

Review the Diff

After you create your PR, a reviewer will review your changes and look at

the diff. Open your PR, and observe a list of commits. In the example

below, there is one commit: "Update UI text for General Preferences". The

comment above the commit was a comment that was directly added in the

GitHub UI. Each commit links to the updated file and will give a visual

history of what changed.

When viewing the commit in GitHub, observe line deletions in red and line

additions in green. Reviewers will look at this diff to determine what

changed before merging your PR. They may also review your work locally

and test it.

5.

Demo Guide | git-ing Started with GitHub

17

If you are signed up to receive GitHub emails and notifications, you will get

an email letting you know that your PR was merged. Reviewers may also

chat with you via GitHub in the comments or identify lines of code where

they might change something.

All of the collaboration and comment work can occur in GitHub, but if you

need to make changes, you will need to go back to your local copy and

make additional commits.

Note: As long as you continue to work on the same feature

branch on your local copy, any additional commits you push to

GitHub will be added to your PR.

Demo Guide | git-ing Started with GitHub

18

Pull Changes and Update Your Repo

This demo has only scratched the surface on how to work with git and

GitHub. Once your PR is submitted and merged, your work becomes part

of the original project. If you are going to keep contributing to the project,

you will need to pull all of the other changes that were made between the

time you cloned the repo and now.

After you make your first PR, your main branch becomes outdated

because it doesn't contain the changes you made on your feature branch,

but it also doesn't contain changes that may have been added to the

upstream repo while you were working. Follow the steps below to pull all

upstream changes and update your repo both locally and on GitHub.

Important Note: Many organizations and companies have a

specific method for pulling changes and updating local copies

of repos. The below workflow is one method for doing this;

however, some organizations may require that you rebase

instead of pull . After you complete the below steps, look at

the git log . You will see an additional merge commit, and

many developers prefer a "clean" history — without this

commit. The rebase method goes beyond the scope of this

demo. Refer to the Additional Resources section for

information on advanced git options.

To update your local copy, first switch to the main branch:

git switch main

Pull the upstream changes:

git pull upstream main

git pull is a combination of two commands — git fetch and git

merge . With git pull , you are fetching the updates from the

upstream repo and then merging them into the main branch of your

local copy.

Delete your old feature branch:

git branch -d <branch_name>

1.

2.

3.

Demo Guide | git-ing Started with GitHub

19

Update the main branch on your forked GitHub repo:

git push origin main

Delete your old feature branch from GitHub:

git push --delete origin <branch_name>

Now you can create and switch to a new feature branch as well as

work on the next feature or bug.

4.

5.

Demo Guide | git-ing Started with GitHub

20

Additional Resources

There is plenty more to learn about git . There are numerous resources

online, and we have some great courses on Pluralsight if you want to dive

deeper into some advanced topics.

The Managing Source Code with Git path on Pluralsight provides you

with multiple courses to learn more about some of the complex

features of git . You can take a Skills IQ test to see how much you

know about git .

GitHub also offers a bunch of free, hands-on courses through their

Learning Lab. The Learning Lab will create repos in your GitHub

account for you to experiment and work with.

The official GitHub and GitLab documentation is very useful for

learning about these services. Many of the basic features of both

services are the same, so once you learn one, it's not too hard to learn

the other.

This article provides a lot of useful information for writing good

commit messages.

We used HTTPS for cloning repos and then pushed via HTTPS with a

Personal Access Token. Pulling and authenticating with SSH requires

some extra steps, but some organizations may require that you use

this method instead.

Contribute to Open-Source Projects

The best way to get practice on GitHub is to contribute to open-source

projects. There are a number of projects out there that you can jump in and

contribute to. Many projects have a contributor's manual, which will give

you information on the project's development workflow as well as how to

open a PR or respond to issues.

r/technicalwriting has a great list of open-source projects that are

always looking for documentation volunteers.

You can also perform advanced searches on GitHub to look for issues

with the tags documentation and good-first-issue . The good-

first-issue tag is typically reserved for small fixes that allow you to

dive in and help with an existing project. You can also search by the

help-wanted tag as this is reserved for open-source volunteers.

•

•

•

•

•

•

•

Demo Guide | git-ing Started with GitHub

21

https://app.pluralsight.com/paths/skills/managing-source-code-with-git
https://lab.github.com/
https://lab.github.com/
https://docs.github.com/en/get-started/quickstart/hello-world
https://docs.gitlab.com/ee/gitlab-basics/
https://cbea.ms/git-commit/
https://cbea.ms/git-commit/
https://docs.github.com/en/authentication/connecting-to-github-with-ssh
https://www.reddit.com/r/technicalwriting/comments/gcfmuh/a_list_of_open_source_projects_with_volunteer/
https://github.com/search?q=label%3Adocumentation+label%3Agood-first-issue+state%3Aopen&type=Issues&ref=advsearch&l=&l=

	git-ing Started with GitHub
	Introduction
	Prerequisites
	Locally Install git
	Create a GitHub Account, and Configure It Locally
	Create a Personal Access Token

	Terminology
	Fork and Clone Repos
	Fork a Repo
	Clone a Repo

	Configure Your Local Repo
	Add Remotes
	Create and Check Out Branches

	Add, Commit, and Push Files
	Add Files to the Staging Space
	Commit Files
	Push Commits to GitHub

	Open a Pull Request (PR)
	Review the Diff

	Pull Changes and Update Your Repo
	Additional Resources
	Contribute to Open-Source Projects

